(2)

(1)

PREVIOUS HSE QUESTIONS FROM THE CHAPTER "CHEMICAL BONDING AND MOLECULAR STRUCTURE"

- 1. Draw the potential energy curve for the formation of a hydrogen molecule on the basis of inter-nuclear distance between the hydrogen atoms. (2)
- 2. (i) What is meant by dipolemoment? (1)
 - (ii) Dipolemoment of BF₃ is zero, but that of NH₃ is not zero. Why ? (2)
- 3. (i) A molecule of the type AB_2E_2 has 2 bond pairs of electrons and 2 lone pairs of electrons. The most stable structure of this molecule is .
 - (A) Tetrahedral (B) Bent (C) Square planar (D) Square pyramid (1)
 - (ii) Write the important postulates of VSEPR theory.
- 4. (i) Write the molecular orbital configuration of O_2 molecule. Account for its paramagnetic character. (2) (ii) Calculate the bond order of O_2 molecule. [December 2021] (2)

(3)

(1)

(1)

5. Fill in the blanks :

Molecule	Structure	Bond Angle
BF ₃		120 ⁰
BeCl ₂	Linear	

- 6. (i) What is bond order according to M.O. theory? (1) (ii) He₂ molecule does not exist, why? (2)
- 7. (i) Write any two postulates of VSEPR theory. (2)
 - (2) (ii) Hydrogen bonds are of two types, which are they? Write one example for each.
- 8. (i) Hybridisation of Carbon in CH_4 is
 - (A) sp²(B) sp (C) sp^3 (D) sp³d(1)
 - (ii) Write any two characteristics of hybridisation.
 - (iii) O_2 molecule is paramagnetic, explain using M.O. theory. (2) [September 2021]
- 9. (a) Define Bond angle.
 - (b) NH₃ and NF₃ molecules have a pyramidal shape with a lone pairs of electrons on nitrogen atom. But the dipole moment of NH₃ is 4.9 x 10^{-30} Cm and that of NF₃ is 0.8 x 10^{-30} Cm. Give reason. (2)
- 10. (a) The bond angle in water is lower than the tetrahedral angle. Why? (1)
 - (b) Give 1 example of a molecule in which the central atom is in sp hybridisation. Predict its geometry. (1)
 - (c) Write the MO configuration of N₂ molecule and calculate its bond order. (2) [Dec 2020]
- 11. (a) Give two examples of compounds having expanded octet. (1)(b) Draw the Lewis dot symbols of (i) Cl₂ (2) (ii) NF₃
- 12. (a) Predict the hybridisation of phosphorous atom in PCl₅ molecule. (1)
 - (b) Account for the high reactivity of PCl₅ molecule.
 - (c) Draw the MO energy level diagram of O_2 molecule.
- (2) [March 2020] 13. The dipole moment of BeF_2 is zero, while that of H_2O is 1.85 D. Account for this the on basis of their molecular structure. (2)
- 14. (a) A molecule of the type AB₄E has 4 bond pairs of electrons and 1 lone pair of electron. Predict the most stable structure of this compound. (1)
 - (b) Hydrogen fluoride is a liquid, while hydrogen chloride is a gas. Why? (1)
- 15. Draw the molecular orbital diagram for F_2 molecule. Account for its magnetic character. (3) [July 2019]
- 16. Represent the Lewis structure of Ozone (O_3) molecule and assign the formal charge on each atom. (2)
- 17. Among NaCl, BeCl₂ and AlCl₃, which one is more covalent? Justify the answer. (2)

- 18. Write the molecular orbital electronic configuration of N₂ and O₂ molecules. Compare the stability and magnetic behaviour of these molecules on the basis of M. O. theory.
 (3) [March 2019]
- If Z-axis is the internuclear axis, name the type of covalent bond formed by the overlapping of two p_yorbitals. (1)
- 20. Write any two limitations of octet rule. (2)
- 21. The diatomic species Ne₂, does not exist, but Ne₂⁻ can exist. Explain on the basis of molecular orbital theory. (4) [August 2018]
- 22. Predict the shape of XeF_4 molecule, according to VSEPR theory. (1)
- 23. By using the concept of hybridization, explain the structure of H_2O molecule. (2)
- 24. Write the molecular orbital electronic configurations of N2 and O2 and calculate their bond orders. Give a comparison of their stability and magnetic behaviour. (4) [March 2018]

(3)

- 25. a) The hybridization of C in ethene is
 - i) sp ii) sp² iii) sp³ iv) sp³d (1)
 - b) Explain sp³d² hybridization with an example.
 - c) Calculate the bond order of Lithium molecule. (At. no. of Li is 3) (1) [July 2017]
- 26. The geometry of the molecule is decided by the type of hybridisation.
 - a) Discuss the shape of PCl_5 molecule using hybridisation. (2)
 - b) Give the reason for the high reactivity of PCI_5 . (2)
 - c) Isoelectronic species have the same bond order. Among the following choose the pair having same bond order.
 - $CN^{-}, O_{2}^{-}, NO^{+}, CN^{+}$ (1) [March 2017]
- 27. VSEPR theory is used to predict the shape and bond angle of molecules.
 - a) Write the postulates of VSEPR theory. (2)
 - b) Explain the shape and bond angle of NH_3 molecule using VSEPR theory. (2)
 - c) PCl₅ molecule is unsymmetric. Why? (2) [September 2016]
- 28. a) The electronic configuration of a molecule can give information about bond order.
 - i) Write the molecular orbital configuration of F₂ molecule.
 - ii) Find its bond order. (2)
 - b) Give any two factors influencing the formation of an ionic bond. (2)
 - c) Give the shape of the following species. i) NH_4^+ ii) $HgCl_2$ (1) [March 2016]
- 29. a) The net dipole moment of a polyatomic molecule depends on the spatial arrangement of various bonds in the molecule. The dipole rnoment of BF₃ is zero while that of NF₃ is not zero. Justify. (2)
 - b) The type of hybridization indicates the geometry of a molecule. In water molecule, the oxygen atom is sp³ hybridized. But water molecule has no tetrahedral geometry. Explain (2)
- 30. The formation of molecular orbitals can be described by the linear combination of atomic orbitals.
 - a) Which one of the following correctly represents the formation of bonding molecular orbital from the atomic orbitals having wave functions ψ_A and ψ_B ?
 - i) $\psi_A x \psi_B$ ii) ψ_A / ψ_B iii) $\psi_A + \psi_B$ iv) $\psi_A \psi_B$ (1)
 - b) Write the electronic configuration of oxygen molecule on the basis of Molecular Orbital Theory. Justify the presence of double bond in it and account for its paramagnetic character. (2)

[October 2015]

31. Molecular orbital theory was developed by F. Hund and R.S. Mullikken.

Join Telegram Channel: https://t.me/hsslive

- b) i) Write the molecular electronic configuration of the N_2 molecule. (1)
 - ii) Predict the stability and magnetic property of N_2 with reasons. (3)
- 32. In order to explain the geometrical shapes of molecules, the concept of hybridisation was introduced.
 - a) The geometry of SF₆ molecule is
 - i) Tetrahedral ii) Planar iii) Octahedral iv) Trigonal bipyramidal (1)
 - b) i) Define the term hybridisation. (1)
 - ii) Explain sp³ hybridisation taking methane (CH₄) as an example. (3) [March 2015]
- 33. a) Molecular orbitals are formed by the linear combination of atomic orbitals (LCAO). Give the salient features of molecular orbital theory. (3)
 - b) Explain $sp^{3}d$ hybridisation with a suitable example. (2)
- 34. a) The shape of the molecules is based on the VSEPR theory. Give the salient features of this theory. (3)b) Draw the potential energy curve for the formation of a hydrogen molecule on the basis of tinter nuclear distance of the hydrogen atoms. (2) [August 2014]
- 35. a) He₂ cannot exist as stable molecule. Justify this statement on the basis of bond order. (1)
 b) State Fajan's rule regarding the partial covalent character of an ionic bond. (1)
 - c) Which has higher boiling point o-nitrophenol or p-nitrophenol? Give reason. (3) [March 2014]
- 36. a) Only valence electrons of atoms take part in chemical combination. Draw the Lewis representation of NF₃. (1)
 - b) Define dipole moment. The dipole moment of BF_3 is zero. Why?(2)
 - c) Based on bond order compare the relative stability of O_2 and $O_2^{2^2}$. (2) [September 2013]
- 37. The Valence Shell Electron Pair Repulsion (VSEPR) theory helps in predicting the shapes of covalent molecules.
 - a) Arrange the bond pair electron and lone pair electron in the decreasing order of the repulsive interactions among them. (1)
 - b) A molecule of the type AB₃E₂ has three bond pairs and two lone pairs of electrons. Predict the most stable arrangement of electron pairs in this molecule. (1)
 - c) The bond order value is an important property of a molecule. How is bond order related to bond length? (1)
 - d) Write the electronic configuration of an oxygen molecule and justify its magnetic character. (2)

[March 2013]

- 38. a) The ionic bonds have partial covalent character and the covalent bonds also show some ionic character.
 - i) Explain the covalent character of Lithium chloride using Fajan's rule (1)
 - ii) NF_3 and NH_3 show dipole moment. But the dipole moment of NF_3 is less than that of NH_3 . Why? (1)
 - iii) The covalent bond can be explained by Molecular Orbital Theory (MOT). Using MO diagram explain the paramagnetic nature of oxygen molecule. (3) [September 2012]
- 39. Valence Bond Theory (VBT) and Molecular Orbital Theory (MOT) are the two important theories of chemical bonding.
 - a) Out of the following which is the hybridisation of phosphorus in PCI_5 ? (sp³, sp², dsp², sp³d) (1)
 - b) Explain the geometry of PCl_5 molecule and account for its high reactivity. (2)

Join Telegram Channel: https://t.me/hsslive

- c) Write the molecular orbital configuration of the C₂ molecule and calculate its bond order. (2) [March 2012]
- 40. a) Hydrogen bonding plays an important role in determining the physical properties of substances.
 - i) Illustrate hydrogen bonding using an example. (1½)
 - ii) Compare the boiling points of o-nitro phenol and p-nitro phenol based on hydrogen bonding. (1½)
 - b) Describe the hybridisation and structure of PCI_5 molecule. (2) [September 2011]
- 41. The attractive force which holds atoms together in a molecule is called a chemical bond.
 - a) Explain the formation of a H_2 molecule on the basis of the valence bond theory (VBT). (2½)
 - b) Using the molecular orbital theory (MOT), explain why Ne_2 molecule does not exist? (1¹/₂)
 - c) Calculate the bond order of dinitrogen (N_2). (1) [March 2011]
- 42. VSEPR theory is used to predict the shape of covalent molecules.
 - a) State the main postulates of VSEPR theory.
 - b) Based on VSEPR theory predicts the shape of H_2O and NH_3 . (2) [October 2010]
- 43. The stability and magnetic properties of a molecule can be explained using the molecular orbital theory proposed by F. Hund and R.S. Mulliken.

(3)

- a) Define bond order according to the M.O theory.
- b) Draw the energy level diagram for the formation of O_2 molecule.
- c) Calculate the bond order and predict the magnetic character of O_2 molecule. [March 2010]
- 44. a) What do you understand by bond pair electrons and lone pair electrons? (2)

b) Explain the bond pair electrons and lone pair electrons H₂O and NH₃ molecules with suitable drawings.
 (3) [March 2009]

45. Water is a liquid while H_2S is a gas.

a) Suggest the reason for the above fact.

b) Explain the phenomenon. (2)

[February 2008]